Random walk models associated with distributed fractional orderdifferential equations

نویسندگان

  • Sabir Umarov
  • Stanly Steinberg
چکیده

In this paper we construct new random walks connected with fractional order differential equations. Namely, the governing equations corresponding to the constructed random walks are multi-term or distributed fractional order differential equations. Nowadays the connection between random walk and fractional order dynamics is well known, see, for instance [1, 17, 26, 33, 38]. A number of constructive random walk models governed by fractional differential equations in the one-dimensional case were studied by Gillis, et al. [12], Chechkin, et al. [7], Gorenflo, et al. [15, 16], and in the n-dimensional case by Umarov [35], Umarov, et al. [36], Andries, et al. [3]. The governing equation in these studies depends on parameters β ∈ (0, 1] and α ∈ (0, 2], and is given by the fractional order differential equation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monte Carlo Random Walk Simulations Based on Distributed Order Differential Equations

In this paper the multi-dimensional random walk models governed by distributed fractional order differential equations and multi-term fractional order differential equations are constructed. The scaling limits of these random walks to a diffusion process in the sense of distributions is proved. Simulations based upon multi-term fractional order differential equations are performed. Mathematics ...

متن کامل

Monte Carlo Random Walk Simulations Based on Distributed Order Differential Equations with Applications to Cell Biology

In this paper the multi-dimensional Monte-Carlo random walk simulation models governed by distributed fractional order differential equations (DODEs) and multi-term fractional order differential equations are constructed. The construction is based on the discretization leading to a generalized difference scheme (containing a finite number of terms in the time step and infinite number of terms i...

متن کامل

Retarding Sub- and Accelerating Super-diffusion Governed by Distributed Order Fractional Diffusion Equations

We propose diffusion-like equations with time and space fractional derivatives of the distributed order for the kinetic description of anomalous diffusion and relaxation phenomena, whose diffusion exponent varies with time and which, correspondingly, can not be viewed as self-affine random processes possessing a unique Hurst exponent. We prove the positivity of the solutions of the proposed equ...

متن کامل

Distributed-order diffusion equations and multifractality: Models and solutions.

We study distributed-order time fractional diffusion equations characterized by multifractal memory kernels, in contrast to the simple power-law kernel of common time fractional diffusion equations. Based on the physical approach to anomalous diffusion provided by the seminal Scher-Montroll-Weiss continuous time random walk, we analyze both natural and modified-form distributed-order time fract...

متن کامل

Study on stability analysis of distributed order fractional differential equations with a new approach

The study of the stability of differential equations without its explicit solution is of particular importance. There are different definitions concerning the stability of the differential equations system, here we will use the definition of the concept of Lyapunov. In this paper, first we investigate stability analysis of distributed order fractional differential equations by using the asympto...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006